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Abstract

Affecting 1% of the population, bicuspid aortic valve (BAV) is the most prevalent1

anatomical malformation of the heart. Currently, the limited availability of labeled2

data hinders the development of automated detection methods. This paper presents3

a new method for efficiently generating training labels for the BAV classification4

task. We first define heuristic rules based on geometric features of phase-contrast5

MRI images to assign labels to the images, albeit noisily. We then define a factor6

graph based generative model to learn the accuracies and dependencies of the7

heuristics. Finally, we use our learned parameters to optimally combine the noisy8

labels from the heuristics into probabilistic training labels for the cardiac MRI9

dataset. We demonstrate how our model improves over majority vote by 0.026810

points AUC and by 18.24% accuracy.11

1 Introduction12

Bicuspid aortic valve (BAV) is a highly prevalent malformation of the aortic valve that occurs in 1-2%13

of the population, where two leaflets of the aortic valve are present instead of the normal three. BAV14

has a wide variety of symptoms and presentations, sometimes requiring surgery at the time of birth15

or going undiagnosed into middle or late adulthood [Roberts and Ko, 2005]. UK Biobank (UKBB)16

released a public dataset of 100,000 adult participants [Allen et al., 2014] and their associated cardiac17

MRI sequences [Petersen et al., 2013]. The availability of such a dataset carries the potential for18

conducting a variety of genetic and epidemiological studies; however, the first step is to classify each19

image as being normal or BAV.20

Although various machine learning approaches have been used for automated image classification,21

these methods require large magnitudes of labeled training data to achieve state-of-the-art performance.22

For medical datasets, the cost of hand-labeling by certified physicians is significantly higher than that23

of contracted human-intelligence workers such as those available via the Amazon Mechanical Turk24

service. For example, we only have 112 labeled videos for our dataset, which were hand labeled by25

collaborating cardiologists. Moreover, only 12 videos (10.7%) of these depict BAV valves, leading to26

a very small subset to learn from. Therefore, there is a need for an efficient approach to labeling large27

magnitudes of training data that can feed the data-hungry machine learning models.28

In our approach, we employ weak supervision, which relies on high level knowledge such as29

knowledge bases and domain expertise, to label data efficiently, albeit noisily [Mintz et al., 2009,30

Bunescu and Mooney, 2007, Craven et al., 1999]. For our dataset, we use Coral [Varma et al., 2017] ,31

a weak supervision paradigm that relies on user-defined heuristic rules to imperfectly label data to32

address the issue of limited labels and remove the necessity for cardiologists to hand-label additional33

data. To develop these heuristics, we first extract geometric features of the valve by preprocessing the34

phase-contrast cardiac MRI images. We then develop heuristics that take these features as input and35

use simple if-then rules to assign labels to the MRI data. Even when developing heuristics, we only36
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rely on domain-expertise and feature value histograms and do not use any ground truth labels. We use37

Coral’s underlying generative model to learn the accuracies and dependencies for these heuristics and38

assign probabilistic training labels to the data. Finally, we validate our weak supervision approach39

for generating training labels by evaluating our labels against the ground truth labels provided by40

cardiologists, obtaining an accuracy of 85.28% and AUC of 0.7376.

Figure 1: High-level workflow for probabilistic training label generation based on user-defined
features and heuristics.

41

2 Methodology42

We analyze phase-contrast images from the UKBB heart MRI dataset, which consists of 112 videos43

of the heart during the cardiac cycle. These phase-contrast videos for blood flow were captured44

from the short axis plane oriented to the aortic annulus. Each video consists of 30 frames that are45

192× 192 pixels. Since the images target the aortic valve, which is the point of concentrated blood46

flow during the cardiac cycle, they capture the brightest portion of the image. We can exploit this47

phenomenon to easily extract geometric features of the heart valve. We selected the six brightest48

frames from each 30-frame series for analysis, resulting in 600 frames of healthy patients and 7249

frames of patients with BAV.50

2.1 Preprocessing51

Figure 2: Pipeline from raw phase-contrast images to regions ready for feature extraction.

Since we did not have access to ground truth segmentations outlining the valve area, we experimented52

with several thresholding techniques to isolate regions of interest and denoise the image background.53

Computing the mean brightness of each image was a helpful way to approximate the general range of54

threshold values that could be manually set. We experimentally found an intensity threshold used to55

generate binary masks of each image by optimizing for thresholds that removed background noise56

while maintaining the integrity of the aortic valve’s shape. When each of these masks were applied to57

the original images, the background was removed and only the primary regions of interest remained.58

Next, we computed the Otsu threshold to apply a morphological closing to each thresholded image,59

which fills holes such that each region is treated as a discrete geometric shape for feature extraction60
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Table 1: Feature values for target regions of patient images with ground truth labels.
MRI Classification Area Perimeter Eccentricity Intensity

BAV 152 61.31 0.7861 79.76

Normal 112 38.14 0.32 125.82

Table 2: Heuristic Function Evaluation Results
Statistics

Heuristic Function Coverage AUC Accuracy F1 score Recall Precision

HF_Area 0.4479 0.6325 0.8040 0.4158 0.3443 0.5250
HF_Perimeter 0.6235 0.6494 0.8186 0.4571 0.3478 0.6667
HF_Eccentricity 0.6190 0.5593 0.7380 0.2781 0.2019 0.4468
HF_Intensity 0.5446 0.5278 0.5574 0.2286 0.1420 0.5854

[Van der Walt et al., 2014]. Finally, we selected the region with the highest intensity as our region of61

interest, representing the heart valve.62

2.2 Heuristic Generation63

Heuristic functions (HFs) map from features to potential labels for each image in the training set.64

These user-defined HFs are composed of nested if-then statements that determine whether features65

fall above or below user-set thresholds. We collaborate with cardiologists and use histograms of66

feature values to develop heuristic functions without explicitly using ground truth labels.67

Physiologically, we expected the area and perimeter of BAV images to be smaller than those of68

normal images. However, after our preprocessing steps, we noticed that it was not uncommon for69

the region labeling to overestimate the area of the aortic valve, as seen in 1. We suspect that this is a70

result of the irregularity in the shape of BAVs. Based on physiological intuition, we also expected71

eccentricity values to be greater for BAV, also reflected in 1. Finally, we expected intensity to be72

greater for the BAV images because a smaller valve typically leads to more blood flow. This is not73

reflected in the example provided 1, which highlights the challenge of using a single threshold across74

images without normalized intensity values. We provide statistics of these HFs in Table 1, evaluated75

on the 672 images we had access to ground truth labels for.76

2.3 Weak Supervision77

We use the Coral paradigm [Varma et al., 2017] to learn dependencies and accuracies of the HFs78

in order to generate training labels. Coral infers dependencies by performing static analysis over79

the source code and uses a factor graph to encode the relationships between HFs, features, and class80

labels. Coral uses this model to optimally combine noisy labels from the HFs and assign probabilistic81

labels to the data.82

3 Experimental Evaluation83

In order to evaluate the efficacy of our weakly-supervised approach, we compare the probabilistic84

training labels from our generative model to labels from majority vote, which does not take the85

3



Table 3: Label Generation Evaluation Results
Statistics

Method Coverage AUC Accuracy F1 score Recall Precision

Majority Vote 0.9300 0.7108 0.6704 0.3125 0.4348 0.2439
Generative Model 0.7376 0.8528 0.3947 0.4348 0.3614

Figure 3: ROC curves for majority vote (MV) and generative models.

different accuracies and dependencies of the heuristics into account. In our evaluation, we prioritize86

F1 score because it captures the trade-off between precision and recall, both important metrics for87

our task. For the purposes of evaluating our training labels, we define a marginal threshold (thresh)88

to convert our probabilistic labels (prob) into true labels (y) such that y = I[prob ≥ thresh].89

The class imbalance in our data also translates into trade-offs when considering the marginal threshold90

for converting probabilistic labels into true labels for evaluation of the generative model.91

We experimentally quantify the effectiveness of our generated training labels by considering AUC,92

accuracy, and F1 score and show the resulting performance in Table 3. While both methods achieve93

the same recall, the generative model approach outperform majority vote on every other metric,94

making it well-suited for generating fairly accurate training labels without requiring data with ground95

truth labels.96

Note that as shown in Table 3, the coverage of both methods is 93%. This translates to 7% of the97

images not receiving a label from any heuristic function. Since we are generating training labels,98

not predicting final labels, the less than complete coverage is favorable since it will prevent the end99

model we train from learning possibly incorrect relations.100

4 Conclusion and Next Steps101

We propose a pipeline to preprocess phase-contrast images targeting aortic valves and generate102

relevant heuristic functions. In doing so, we rely on intuition about the physiological characteristics of103

phase-contrast images that target aortic valves to write user-defined heuristic functions. We evaluate104

quality of the probabilistic training labels from the generative models to labels from simple majority105

vote. These results lessen the semantic gap between cardiologists’ diagnostic intuitions for labeling106

aortic valve data and a machine’s ability to automate the label generation process.107

We have room to improve the output of our generative model by including additional image processing108

steps to more accurately label regions. In addition, we can attempt additional preprocessing to109

normalize feature values, allowing the absolute thresholds of our heuristics to operate more effectively.110

Finally, we plan to use the probabilistic labels of our generative model to train deep convolutional111

neural networks for the BAV classification task.112
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