Scene Graph Prediction with Limited Labels Vincent S. Chen (vincentsc@cs.stanford.edu), Paroma Varma, Ranjay Krishna, Michael Bernstein, Christopher Ré, Li Fei Fei

The Long Tail of Visual Relationships

Problem Scene graph datasets are **incomplete** due to annotator error +cost.

State-of-the-art models only consider the top 50 relationships and ignore the rest!

Leveraging Image-Agnostic Features

Inspiration: Textual relation extraction relies on document-agnostic heuristics.

<Tokyo, capitol of, Japan>

Challenge: Visual relationships vary based on context within an image!

Idea: Leverage image-agnostic features in heuristics for label generation.

mg: visualgenome.org

Top 50 Relationships

Generating Labels for Structured Predictions

- 3.

images

Large set of unlabeled

Mask-RCNN

Relationships with object detections

Experimental Results

Our approach outperforms naïve baselines (B, F+O) using only limited labels, semi-supervised methods (DT, LP) relying on image-agnostic features to learn patterns over labeled/unlabeled data, and transfer learning, which pretrains on the set of available relationships and fine-tunes on limited relationship labels.

	Scene Graph Detection			Scene Graph Classification			Predicate Classification		
Model	R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100
BASELINE $[n = 10]$	0.00	0.00	0.00	0.04	0.04	0.04	3.17	5.30	6.61
Freq+Overlap	10.16	10.84	10.86	9.90	9.91	9.91	20.39	20.90	22.21
TRANSFER LEARNING	11.99	14.40	16.48	17.10	17.91	18.16	39.69	41.65	42.37
DECISION TREE	11.11	12.58	13.23	14.02	14.51	14.57	31.75	33.02	33.35
LABEL PROPAGATION	6.48	6.74	6.83	9.67	9.91	9.97	24.28	25.17	25.41
OURS (CATEG. + SPAT.)	17.67	18.69	19.28	20.91	21.34	21.44	45.49	47.04	47.53
Oracle $[n_{\text{oracle}} = 108n]$	24.42	29.67	30.15	30.15	30.89	31.09	69.23	71.40	72.15

Our approach improves with increasing labeled and unlabeled data.

Challenges: Semantically similar phrasing / synonymous relationships

Studying Visual Relationship Complexity

Relationship subtypes capture the different ways that a visual relationship manifests in the dataset.

Categorical Subtype: Count the number of object categories for this relationship

Trends: With \uparrow relationship complexity (defined by subtypes), our weak supervision approach improves relative to transfer learning

Code: <u>https://github.com/vincentschen/limited-label-scene-graphs</u> Snorkel: <u>snorkel.org</u>

Probabilistic Labels

Spatial Subtypes: Mean shift clustering over spatial features, computed over bounding boxes