Automated Training Label Generation Stanford Cardiovascular Institute for Aortic Valve Classification

Vincent Chen, Paroma Varma, Madalina Fiterau, Seung-Pyo Lee, James Priest and Christopher Ré

Summary

- **Context:** Bicuspid aortic valve (BAV) is the most • prevalent malformation of the heart, affecting 1% of the population
- **Problem:** The lack of labeled data makes \bullet developing automated methods challenging
- Method: Use weak-supervision to learn a

Heuristic Functions (HFs)

Create user-defined heuristic functions based on domain knowledge about features

Example HF (area/perimeter ratio):

```
ratio = area/(perimeter**2)
def λ ratio(ratio):
    if ratio >= 0.072:
        return 1
```

generative model [1] over a ortic valve images to produce probabilistic training labels for end models

Weak Supervision Paradigm

- Write user-defined heuristic functions (HFs) over geometric features of images
- Learn relationships between HFs, features, and ulletlatent class labels to generate probabilistic labels

Limited Labeled Dataset

- **Phase-contrast MRI** targets the aortic valve, showing areas of higher flow with greater intensity
- UK Biobank (UKBB) released a dataset of 100,000 adult cardiac MRI sequences
- In collaboration with cardiologists, we **hand**labeled I I 2 samples (10.7% BAV)

Feature Extraction

- Preprocess images to isolate regions of interest lacksquare
- Extract geometric features (e.g. area, ulletintensity, eccentricity) from labeled regions

if ratio <= 0.062:

return -1

return 0

Generative Model

- Learn accuracies and correlations among HFs using no labeled data
- Model dependencies as shared / correlated inputs

HF Evaluation Results

HF	Coverage	AUC	Accuracy	FI score
Λ_area	0.2231	0.6071	0.5064	0.3937
A_perimeter	0.1696	N/A	0.1754	0.2985
A_ratio(defined 1)	0.6339	0.5973	0.6291	0.3525
A_intensity	0.1190	0.6379	0.4750	0.4324
A_eccentricity	0.7143	0.5873	0.6438	0.3241

Results

Rate Our generative model sees improvements over majority vote (MV): True + 1.33 AUC + 17.24% accuracy

Future Work

- Fine-tune weak supervision in conjunction with • CNN for full classification pipeline
- Perform genome-wide association studies (GWAS) based on BAV classification labels

Refs: [1] Varma et al. Inferring Generative Model Structure with Static Analysis. In NIPS 2017.

Contact: Vincent Chen [vincentsc@cs.stanford.edu]